A Novel Numerical Approach in Solving Fractional Neutral Pantograph Equations via the ARA Integral Transform

نویسندگان

چکیده

In this article, a new, attractive method is used to solve fractional neutral pantograph equations (FNPEs). The proposed method, the ARA-Residual Power Series Method (ARA-RPSM), combination of ARA transform and residual power series implemented construct solutions for dispersive differential equations. convergence analysis new proven shown theoretically. To validate simplicity applicability we introduce some examples. For measuring accuracy make comparison with other methods, such as Runge–Kutta, Chebyshev polynomial, variational iterative methods. Finally, numerical results are demonstrated graphically.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Approach for Solving Fractional Pantograph Equation

In this article, we have investigate a Taylor collocation method, which is based on collocation method for solving fractional pantograph equation. This method is based on first taking the truncated fractional Taylor expansions of the solution function in the mathematical model and then substituting their matrix forms into the equation. Using the collocation points, we have the system of nonline...

متن کامل

A new class of operational matrices method for solving fractional neutral pantograph differential equations

*Correspondence: [email protected] Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai, China Abstract This paper uses new fractional integration operational matrices to solve a class of fractional neutral pantograph delay differential equations. A fractional-order function space is constructed where the exact solution lies in, and a set of orthogonal bases are given. Us...

متن کامل

New Integral Transform for Solving Nonlinear Partial Dierential Equations of fractional order

In this work, we have applied Elzaki transform and He's homotopy perturbation method to solvepartial dierential equation (PDEs) with time-fractional derivative. With help He's homotopy per-turbation, we can handle the nonlinear terms. Further, we have applied this suggested He's homotopyperturbation method in order to reformulate initial value problem. Some illustrative examples aregiven in ord...

متن کامل

A Numerical Approach for Solving of Two-Dimensional Linear Fredholm Integral Equations with Boubaker Polynomial Bases

In this paper, a new collocation method, which is based on Boubaker polynomials, is introduced for the approximate solutions of a class of two-dimensional linear Fredholm integral equationsof the second kind. The properties of two-dimensional Boubaker functions are presented. The fundamental matrices of integration with the collocation points are utilized to reduce the solution of the integral ...

متن کامل

Solving Abel Integral Equations of First Kind via Fractional Calculus

We give a new method for numerically solving Abel integral equations of first kind. An estimation for the error is obtained. The method is based on approximations of fractional integrals and Caputo derivatives. Using trapezoidal rule and Computer Algebra System Maple, the exact and approximation values of three Abel integral equations are found, illustrating the effectiveness of the proposed ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym14010050